Stereoselectivity in DNA-templated organic synthesis and its origins.
نویسندگان
چکیده
DNA-templated synthesis is a surprisingly general strategy for controlling chemical reactivity that enables synthetic products to be manipulated in ways previously available only to biological macromolecules. The chiral nature of the DNA template raises the possibility that DNA-templated synthesis can proceed stereoselectively. Here, we show that DNA-templated substitution reactions can exhibit stereoselectivity without the assistance of chiral groups other than those present in DNA. By characterizing changes in stereoselectivity as a result of systematic changes in the structure of the template-reagent complexes, we begin to reveal the origins of the observed stereoselectivity. We propose that the conformations of nucleotides adjacent to the reactants are largely responsible for stereoselectivity. Indeed, template and reagent sequences that can adopt either a left-handed Z-form DNA helix or a normal right-handed B-form DNA helix generate opposite stereoselectivities in the Z-form and B-form even though they share the same covalent structure and the same absolute stereochemistry. Our findings establish ways in which the chirality of an information carrier can be transmitted to the stereochemistry of encoded products through templated synthesis.
منابع مشابه
DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.
In contrast to the approach commonly taken by chemists, nature controls chemical reactivity by modulating the effective molarity of highly dilute reactants through macromolecule-templated synthesis. Nature's approach enables complex mixtures in a single solution to react with efficiencies and selectivities that cannot be achieved in conventional laboratory synthesis. DNA-templated organic synth...
متن کاملIn Vitro Selection of a DNA-Templated Small-Molecule Library Reveals a Class of Macrocyclic Kinase Inhibitors
DNA-templated organic synthesis enables the translation of DNA sequences into synthetic small-molecule libraries suitable for in vitro selection. Previously, we described the DNA-templated multistep synthesis of a 13,824-membered small-molecule macrocycle library. Here, we report the discovery of small molecules that modulate the activity of kinase enzymes through the in vitro selection of this...
متن کاملTranslation of DNA into synthetic N-acyloxazolidines.
The translation of DNA into synthetic molecules enables their manipulation by powerful evolution-based methods previously available only to proteins and nucleic acids. The development of increasingly sophisticated DNA-templated small-molecule syntheses is crucial to broadening the scope of this approach. Here, we report the translation of DNA templates into monocyclic and bicyclic N-acyloxazoli...
متن کاملDNA-templated synthesis in organic solvents.
DNA-templated organic synthesis (DTS) enables new modes of controlling chemical reactivity and allows evolutionary principles to be applied to the discovery of synthetic small molecules, synthetic polymers, and new chemical reactions. The structures that can be accessed in a DNA-templated format thus far have been limited to those that can be generated in aqueous solvents. Here we report effici...
متن کاملDNA-templated organic synthesis and selection of a library of macrocycles.
The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 34 شماره
صفحات -
تاریخ انتشار 2003